
~UNCLASSIFIED %TIP F11 r "
SECURIIV CLASSICA71Oh. OF 1141S PACd (wh@,,t#Fp~verV.to

RE PORT DOCUMENTAT ION PA'GE ar"01 COP.":: f~

1. AEPORI NUMBER 12. GO00 ACCESSIO& Wo. 3. RECIPIENV S CATALOG *Nbiti

4.~~~~ ~ ~ ~ 7'L adutsl)I$YPE Of REPORI & PERIOD COVERED

00 Ada Comviler Validation Summary Report: Alsys, 19 Jan 89 - 1 Dec 90

S AlsyCOMP_019, Version 4.1, Zenith Z-248 Model 50 (host) to 7* PLRFOIWNG-DR4. REPORT NUMBER
Intel isBC 286/12 single boar., computur (a 51A.03

1 7. AUHOR~s)8. CONTRACT 00 GRAN' NLOMERij;

AFNOR, Paris, France.

9 . PERFORMING ORGANIZATIOk AMD ADDRESS 10. PROGRAM ELEMENI. PR~.jECI. YASC

OAENOR, Paris, France. AE OKUI UBR

S 11. CONTROLLING OFFICE NAME Ait' ADDRESS 1Z. REPORT DATE
Ada Joint Program Office
United States Department of Defense 17T~HO ALJ
Washington, DC 2M01-3081

14. NONITORlNG AGENCY NAMi & ADDRLSS(1lf ferentfrom Cntroing, Office) 15. SEL011YT CLASS (oltharreoonj
UNCLASSIFIED

AFNOR, Paris, France. 25a. RI'SJICATION/DOWRNG

it. DISTR1BLJTION STATEMENT (of this Report~ I/

Approved for public release; distribution unlimited.

17. DISTR1SJT1Oh SIATEMZiw7 (of the abTwaflfeterjrBock 20 lf diffeuent froT Report)

UNCASIFEDDTIC
FCTE

18. SUPPdEMihARi NOTES

29. KEYWORDS (Continve on reverse side if ne~resar andtdpritity by block number)

-Ada Proorramnring language, Ada Compiler Validationii$umnary Report, Ada
Compiler Validation Capability, ACVC,- Validation .Testing' Ada
Validation Office, AVO, Ada Validation Facility, AVF, AtNSI/MIL-STD-
18l5A, Ada Joint Program Office, AJPO

20. A2S?RAC I (Confintme an revefj# side if net(Cua'y &ndi~olf f block number)

Alsys, AlsyCOMP_-019, Version 4.1, AFNOR, France; Zenith Z-248 Model 50 under MS/DOS,

Version 3.2 (host) to Intel isBC 286/12 single board computer (target), ACVC 1.10

g0 01 03 004
DD t"4 1473 1DITION OF I NOV 6b IS OBSOLCIE

I JAN 73 SIN 0102-LI-014-SSO1 UNCLASSIFIED
StCU Vt CLASSIfICATION Or 1*415 PAGE (*h~emDta Etered)

AVy Control Number: AVY-VSR-AFNOR-88-20

Ada COMPILER

VALIDATION SUM1MARY
REPORT:

Certificate Number:
B90119AI.10

032

Alsys
AlsyCO14P 019 , Version 4.1

Zenith Z-248 model 50 and
Intel isBC 286/12 single board computer

Completion of On-Site
Testing:

19 January
1989

AcCesion For

DTIC Tii

prepared BY: .

AFNOR .,ltir *;..

Tour Europe
Cedex 7 ..

F-92080 Paris la Defense Dist, bulto,:I
Avadlbiwy 1: ode's

Avdi uj:jj!or

Dit special

Prepared For:

AaJoint Program officeA
nited States Department

ot Detens

Wasbington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: AlsyCOMP_019, Version 4.1

Certificate Number: 890119A1.10032

Host: Zenith Z-248 Model 50 under MS/DOS, Version 3.2

Target: Intel isBC 286/12 single board computer

Testing Completed 19 January 1989 Using ACVC 1.10

This report has been reviewed and is approved.

AFUOR
Fabrice Garnier de Labareyre
Tour Europe

~Cedex 7
F-92080 Paris la DMfense

Ada Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director

Department of Defense
Washington DC 20301

2

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 5
1.2 USE OF THIS VALIDATION SUMMARY REPORT 5
1.3 REFERENCES ... 6
1.4 DEFINITION OF TERMS 6
1.5 ACVC TEST CLASSES 7

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 10
2.2 IMPLEMENTATION CHARACTERISTICS11

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 16
3.2 SUMMARY OF TEST RESULTS BY CLASS16
3.3 SUMMARY OF TEST RESULTS BY CHAPTER17
3.4 WITHDRAWN TESTS 17
3.5 INAPPLICABLE TESTS 17
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 19
3.7 ADDITIONAL'TESTING INFORMATION 20
3.7.1 Prevalidation20
3.7.2 Test Method 21
3.7.3 Test Site 22

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B TEST PARAMETERS

APPENDIX C WITHDRAWN TESTS

APPENDIX D APPENDIX F OF THE Ada STANDARD

INTRODUCTION

CHAPTER 1

INTRODUCTION

/,

This Validation gummary Report (VSRYTdescribes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-
STD-1815A. This report explains all technical terms used within it
and thoroughly reports the results of testing this compiler using the
Ada Compiler Validation Capability (ACVC). An Ada compiler must be
implemented according to the Ada Standard, and any implementation-
dependent features must conform to the requirements of the Ada
Standard. The Ada Standard must be implemented in its entirety, and
nothing can be implemented that is not in the Stdndard. -

Even though all validated Ada compilers conform to the Ada Standard,
it must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.

The information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an
Ada compiler and evaluating the results. The purpose of validating is
to ensure conformity of the compiler to the Ada Standard by testing
that the compiler properly implements legal language constructs and
that it identifies and rejects illegal language constructs. The
testing also identifies behavior that is implementation-dependent but
permitted by the Ada Standard. Six classes of tests are used. These
tests are designed to perform checks at compile time, at link time,
and during execution.

4

i4TRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on
an Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by
the compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported
by the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is
allowed by the Ada Standard

Testing of this compiler was conducted by under the direction of the
AVF according to procedures established by the Ada Joint Program
Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 19 January 1989 at Alsys inc. in
Waltham, USA

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of thls report. In the
United States, this is provided in accordance with the "Freedom of
Information Act"(5 U.S.C.#552). The results of this validation apply
only to the computers, operating systems, and compiler versions
identified in this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented.
Copies of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

AFNOR
Tour Europe
cedex 7
F-92080 Paris la Defense

5

INTRODUCTION

Questions regarding this report or the validation test results should
be directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language, ANSI/MIL-
STD-1815A, February 1983, and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide,
SofTech, Inc., December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of
Ada programs that tests the conformity of an Ada
compiler to the Ada programming language.

Ada Commentary An Ada Commentary contains all information relevant
to the point addressed by a comment on the Ada
Standard. These comments are given a unique
identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible
for conducting compiler validations according to
procedures contained in the Ada Compiler Validation
Procedures and Guidelines.

AVO The Ada Validation Organization. The AVO has
oversight authority over all AVF practices for the
purpose of maintaining a uniform process for
validation of Ada compilers. The AVO provides
administrative and technical support for Ada
validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,

6

• A

INTRODUCTION

including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a
result that demonstrates nonconformity to the Ada
Standard.

Host The computer on which the compiler resides.

Inapplicable test An ACVC test that uses features of the language
that a compiler is not required to support or may
legitimately support in a way other than the one
expected by the test.

Passed test An ACVC test for which a compiler generate tht
expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity
regarding a particular feature or a combination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may comprise one or more files.

Withdrawn test An ACVC test found to be incorrect and not used to

check conformity to the Ada Standard. A test may be

incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal
or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce compilation
or link errors.

Class A tests check that legal Ada programs can be successfully
compiled and executed. There are no explicit program components in a
Class A test to check semantics. For example, a Class A test checks
that reserved words of another language (other than those already
reserved in the Ada language) are not treated as reserved words by an
Ada compiler. A Class A test is passed if no errors are detected at
compile time and the program executes to produce a PASSED message.

7

INTRODUCTION

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that
every syntax or semantic error in the test is detected. A Class B
test is passed if every illegal construct that it contains is
detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a
PASSED, FAILED, or NOT APPLICABLE message indicating the retult when
it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a
compiler by the Ada Standard for some parameters--for example, the
number of identifiers permitted in a compilation or the numler of
units in a library--a compiler may refuse to compile a Class D test
and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded,
the test is classified as inapplicable. If a Class D test compiles
successfully, it is self-checking and produces a PASSED or FAILED
message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during
compilation. Therefore, a Class E test is passed by a compiler if it
is compiled successfully and executes to produce a PASSED message, or
if it is rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE,
support the self-checking features of the executable tests. The
package REPORT provides the mechanism by which executable tests
report PASSED, FAILED, or NOT APPLICABLE results. It also provides a
set of identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The procedure CHECKFILE is used to check the contents of text files
written by some of the Class C tests for chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set
of executable tests. These tests produce messages that are examined

8

INTRODUCTION

to verify that the units are operating correctly. If these units are
not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are
intended to ensure that the tests are reasonably portable without
modification. For example, the tests make use of only the basic set
of 55 characters, contain lines with a maximum length of 72
characters, use small numeric values, and place features that may not
be supported by all implementations in separate tests. However, some
tests contain values that require the test to be customized according
to implementation-specific values--for example, an illegal file name.
A list of the values used for this validation is provided in Appendix
C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is
inapplicable to the implementation. The applicability of a test to an
implementation is considered each time the implementation is
validated. A test that is inapplicable for one validation is not
necessarily inapplicable for a subsequent validation. Any test that
was determined to contain an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and,
therefore, is not used in testing a compiler. The tests withdrawn at
the time of this validation are given in Appendix D.

9

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: AlsyCOMP_019, Version 4.1

ACVC Version: 1.10

Certificate Number: 890119A1.10032

Host Computer:

Machine: Zenith Z-248 Model 50

Operating System: MS/DOS
Version 3.2

Memory Size: 640 K of main memory
plus 5 Mb of extend memory

Configuration information:
80287 floating point co-processor
40 Mb of hard disk
EGA color display and adapter

Target Computer:

Machine: Intel isBC 286/12 single board
computer

Memory Size: 1 Mb

Communications Network: Serial Port, V24

10

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behavior of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

Capacities.

The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

The compiler correctly processe a test containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

Predefined types.

This implementation supports the additional predefined
types SHORTINTEGER, LONGINTEGER, LONG-FLOAT in the
package STANDARD. (See tests B86001T..Z (7 tests).)

Based literals.

An implementation is allowed raise NUMERICERROR or
CONSTRAINTERROR when a value exceeds SYSTEM.MAXINT . This
implementation raises CONSTRAINT-ERROR during execution.
(See test E24201A.)

Expression evaluation.

Apparently no default initialization expressions for record
components are evaluated before any value is checked to
belong to a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

11

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range.
(See test C35903A.)

Apparently NUMERICERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

Apparently NUMERIC ERROR is raised when a literal operand
in a fixed-point comparison or membership test is outside
the range of the base type. (See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round
to even. (See tests C46012A..Z.)

The method used for rounding to longest integer is
apparently round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal
real expressions is apparently round to even. (See test
C4AO14A.)

Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with
more than SYSTEM.MAXINT components raises NUMERIC ERROR
sometimes, CONSTRAINTERROR sometimes. (See test C36003A.)

CONSTRAINTERROR is raised when 'LENGTH is applied to an
array type iith INTEGER'LAST + 2 components. (See test
C36202A.)

CONSTRAINT-ERROR is raised when an array type with
SYSTEM.MAXINT + 2 components is declared. (See test
C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises no exception. (See test C52103X.)

12

CONFIGURATION i.jORMATION

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINTERROR when the
length of a dimension is calculated and exceeds
INTEGER'LAST. array objects are sliced. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises no exception. (See test E52103Y.)

In assigning one-dimensional array types, the expression
appears to be evaluated in its entirety before
CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression
does not appear to be evaluated in its entirety before
CONSTRAINT ERROR is raised wh4n checking whether the
expression s subtype is compatible with the target's
subtype. (See test C52013A.)

Discriminated types.

In assigning record types with discriminants, the
expression appears to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all
choices appear to be evaluated before checking against the
index type. (See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised
if a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

13

CONFIGURATION INFORMATION

Pragmas.

The pragma INLINE is supported for functions or procedures,
but not functions called inside a package specification.
(See tests LA3004A..B, EA3004C..D, and CA3004E..F.)

Generics.

Generic specifications and bodies can be compiled in
separate compilations. (See tests CA1012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA301iA.)

Generic subprogram declarations and bodies can be compiled
in separate compilations. (See tests CA1012A and CA2009F.)

Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CAlO12A.)

Generic non-library subprogram bodies can be compiled in
separate compilations from their stubs. (See test CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

Generic non-library package bodies as subunits can be
compiled in separate compilations. (See test CA2009C.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3OlIA.)

Input and output.

The package SEQUENTIAL 10 can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
EE220D, and EE2201E.)

14

CONFIGURAI'ON INFORMATION

Pragmas.

The pragma INLINE is supported for functions or procedures, but not
functions called inside a package specification.(See tests LA3004A..B,
EA3004C..D, and CA3004E..F.)

Generics.

Generic specifications and bodies can be compiled in separate compilations.
(See tests CA1012A, CA2009C,CA2009F, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3O11A.)

Generic subprogram declarations and bodies can be compiled in separate
compilations. (See tests CA1012A and CA2009F.)

Generic library subprogram specifications and bodies can be compiled in
separate compilations. (See test CAl012A.)

Generic non-library subprogram bodies can be compiled in separate
compilations from their stubs. (See test CA2009F.)

Generic package declarations and bodies can be compiled in separate
compilations. (See tests CA2009C, BC3204C, andBC3205D.)

Generic library package specifications and bodies can be compiled in
separate compilations. (See tests BC3204C andBC3205D.)

Generic non-library package bodies as subunits can be compiled in separate
compilations. (See test CA2009C.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

Input and output.

The director, AJPO, has determined (AI-00332) that every call to OPEN and
CREATE must raise USEERROR or NAME-ERROR if file input/output is not
supported. This implementation exhibits this behavior for SEQUENTIAL_IO,
DIRECTIO, and TEXTIO.

14

CONFIGURATIOJ INFORMATION

This page is blank

15

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was tested,
36 tests had been withdrawn because of test errors. The AVF determined that 577
tests were inapplicable to this implementation. All irapplicable tests were
processed during validation testing except for 201 executable tests that use
floating-point precision exceeding that supported by the implementation and 242
executable tests that use file operations not supported by this implementation.
Modifications to the code, processing, or grading for 52 tests were required
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to
the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

__ _ _ A B C D E L_ __

Passed 129 1132 1758 17 22 46 3104

Inapplicable 0 6 559 0 12 0 577

Withdrawn 1 2 33 0 0 0 36

TOTAL 130 1140 2350 17 34 46 3717

16

TEST INFORMA7:ON

3.3 SUXMARY 0F TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 199 577 555 248 172 99 161 332 137 36 252 257 79 3104

Inappi !4 72 125 0 0 0 5 1 0 0 0 118 242 577

Wdrn 0 1 0 0 0 0 0 2 0 0 1 29 4 36

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 36 tests were withdrawn from ACVC Version 1.10 at thetime of this
validation:

A39005G B97102E BC3009B CD2A62D CD2A63A CD2A63B CD2A63C
CD2A63D CD2A66A CD2A66B CD2A66C CD2A66D CD2A73A CD2A73B
CD2A73C CD2A73D CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G
CD2A83G CD2A84N CD2A84M CD50110 CD2Bl5C CD7205C CD5007B
CD7105A CD7203B CD7204B CD7205D CE21071 CE3111C CE3301A
CE341iB
See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others may depend on
the result of another test that is either inappiicable or withdrawn. The
applicability of a test to an implementation is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 577 tests were inapplicable for the reasons indicated:

The following 201 tests are not applicable because they have floating-point
type declarations requiring more digits than System.MaxDigits:

C241131..Y C35705L..Y C35706L..Y C35707L..Y C35708L..Y
C35802L..Z C45241L..Y C45321L..Y C45421L..Y C45521L..Z
C45524L..Z C45621L..Z C45641L..Y C46012L..Z

17

TEST INFORMATION

C35702A and B86001T are not applicable because this
implementation supports no predefined type ShortFloat.

C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of System.MaxMantissa is less than 32.

C86001F, is not applicable because recompilation of Package
SYSTEM is not allowed.

B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with
a name other than Integer, LongInteger, or ShortInteger.

B86001Y is not applicable because this implementation supports
no predefined fixed-point type other than Duration.

B8600lZ is not- applicable because this implementation supports
no predefined floating-point type with a name other than Float,
Long_Float, or Short-Float.

B91OOIH is not applicable because address clause for entries is
not supported by this implementation.

CD1009C, CD2A41A..B, CD2A41E, CD2A42A..B, CD2A42E..F, CD2A42I..J
are not applicable because size clause on float is not supported
by this implementation.

CDlCO4B, CDlCO4E, CD4051A..D are not applicable because
representation clause on derived records or derived tasks is not
supported by this implementation.

CDlC03C, CD2A83A..C, CD2A83E, CD2A84B..I, CD2A84K..L, CD2BIlB
are not applicable because storage size clause on collection of
unconstrained object is not supported.

CDlCO4A, CD2A21C..D, CD2A22C..D, CD2A22G..H, CD2A31C..D,
CD2A32C..D, CD2A32G..H, CD2A41C..D, CD2A42C..D, CD2A42G..H,
CD2A51C..D, CD2A52C..D, CD2A52G..H, CD2A53D, CD2A54D,
CD2A54H are not applicable because size clause for derived
private type is not supported by this implementation.

CD2A61A..D,F,HI,J,K,L, CD2A62A..C, CD2A71A..D, CD2A72A..D,
CD2A74A..D, CD2A75A..D are not applicable because of the way
this implementation allocates storage space for one component,
size specification clause for an array type or for a record type
requires compression of the storage space needed for all the
components (without gaps).

CD4041A is not applicable because alignment "at mod 8" is not
supported by this implementation.

18

TEST :NFORMATION

CD5003E is not applicable because address clause for intecer variable
is not supported by this implementation.

BD5006D s no: applicable because address claust for pacnaaes is not
supporzt. by this implementation.

CD5011B,D,F,H,L,N,R, CD5012C,D,G,H,L, CD5013B,D,F,H,L,N,R, CD5014U,W
are not applicable because address clause for a constant is not supported
by this implementation.

CD5013K is not applicable because address clause for variables of a record
type :s not supported by this implementation.

CD5012J, CD5013S, CD5014S are not applicable because address clause for a
task is not supported by this implementation.

The following 242 tests are inapplicable because sequential, text, and
direct access files are not supported:

CE2102A..C CE2102G..H CE2102K CE2102N..Y CE2103C..D
CE2104A..D CE2105A..B CE2106A..B CE2107A..H CE2107L
CE2108A..B CE2108C..H CE2109A..C CE2ilOA..D CE2111A..I
CE2115A..B CE2201A..C CE2201F..N CE2204A..D CE2205A
CE2208B CE2401A..C CE2401E..F CE2401H..L CE2404A..B
CE2405B CE2406A CE2407A..B CE2408A..B CE2409A..B
CE2410A..B CE2411A CE3102A..B EE3102C CE3102F..H
CE3102J..K CE3103A CE3104A..C CE3107B CE3108A..B
CE31O9A CE3110A CE3111A..B CE3111D..E
CE3112A..D CE3114A..B
CE3115A EE3203A CE3208A EE3301B
CE3302A CE3305A CE3402A EE3402B CE3402C..D
CE3403A..C CE3403E..F CE3404B..D CE3405A EE3405B
CE3405C..D CE3406A..D CE3407A..C CE3408A..C CE3409A
CE3409C..E EE3409F CE3410A CE3410C..E EE341OF
CE3411A CE34!iC
CE3412A EE34!2C CE3413A CE3413C
CE3602A..D CE3603A CE3604A..B CE3605A..E CE3606A..B
CE3704A..F CE3704M..O CE3706D CE3706F..G CE3804A..P
CE3805A..B CE3806A..B CE3806D..E CE3806G..H CE3905A..C
CE3905L CE3906A..C CE3906E..F EE2201D..E EE2401D
EE240IG

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing, or
evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an

19

TEST INFORMATION

executable test demonstrate conforming behavior that wasn't
anticipated by the test (such as raising one exception instead of
another).

Modifications were required for 52 tests.

The test EA3004D when run as it is, the implementation fails to
detect an error on line 27 of test file EA3004D6M (line 115 of "cat
-n ea3004d*"). This is because the pragma INLINE has no effect when
its object is within a package specification. However, the results of
running the test as it is does not confirm that the pragma had no
effect, only that the package was not made obsolete. By re- irdering
the compilations so that the two subprograms are compiled after file
D5 (the re-compilation of the "with"ed package that makes the various
earlier units obsolete), we create a test that shows that indeed
pragma INLINE has no effect when applied to a subprogram that is
called within a package specification: the test then executes and
produces the expected NOT APPLICABLE result (as though INLINE were
not supported at all). The re-ordering of EA3004D test files is
0-1-4-5-2-3-6.

The following 30 tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:
B23004A B24007A B24009A B25002A B26005A B27005A B28003A
B32202A B32202B B32202C B33001A B36307A B37004A 949003A
B49005A B61012A B62001B B743041 B74304C B74401F B74401R
B91004A B95032A B95069A B95069B BA1101B2 BA1101B4 BC2001D
BC3009A BC3009C BD5005B

The following 21 tests were split in order to show that the compiler
was able to find the representation clause indicated by the comment
--N/A =)ERROR :

CD2A61A CD2A61B CD2A61F CD2A61I CD2A61J CD2A62A CD2A62B
CD2A71A CD2A71B CD2A72A CD2A72B CD2A75A CD2A75B CD2A84B
CD2A84C CD2A84D CD2A84E CD2A84F CD2A84G CD2A845 CD2A84I

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10
produced by the AlsyCOMP_019 was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

20

TEST INFORMATION

3.7.2 Test Method

Testing of the AlsyCOMP_019 using ACVC Version 1.10 was conducted
on-site by a validation team from the AVF. The configuration
consisted of a Zenith Z-248 Model 50 host operating under MS/DOS,
Version 3.2 and a Intel isBC 286/12 single board computer target. The
host and target computers were linked via Serial Port, V24.

A tape containing all tests was taken on-site by the validation team
for processing. Tests that make use of implementation-specific values
were customized by Alsys after loading of the tape.

The contents of the tape were not loaded directly onto the host
computer. They were loaded on a VAX/VMS machine and transferred via a
network to the Zenith Z-248 Model 50. This is the reason why
prevalidation tests were used for the the validation. Those tests
were loaded by Alsys from a magnetic tape containing all tests
provided by the AVF. Customization was done by Alsys. All the tests
were checked at prevalidation time.

Integrity of the validation tests was made by checking that no
modification of the test occured after the time the prevalidation
results were transferred on disquettes for submission to the AVF.
This check was performed by verifying that the date of creation (or
last modification) of the test files was earlier than the
prevalidation date. After validation was performed, 80 source tests
were selected by the AVF and checked for integrity.

The full set of tests was compiled and linked on the Zenith Z-248
Model 50, then all executable images were transferred to the Intel
isBC 286/12 single board computer via Serial Port, V24 and run.
Results were printed from the host computer.

The compiler was tested using command scripts provided by Alsys and
reviewed by the validation team. The compiler was tested using all
default option settings except for the following:

OPTION / SWITCH EFFECT

GENERIC=STUBS Code of generic instantiation is placed in separate
units

CALLS=INLINE The pragma INLINE are taken into account

Tests were compiled, linked, and executed (as appropriate) using 2
computers and a single target computer. Test output, compilation
listings, and job logs were captured on floppy disk and archived at
the AVF. The listings examined on-site by the validation team were
also archivbd.

21

TEST INFORMATION

3.7.3 Test Site

Testing was conducted at Alsys, Inc. in Waltham, USA and was completed
on 19 January 1989.

22

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

Alsys has submitted the following Declaration of
Conformance concerning the AlsyCOMP_019.

23

DECLARATION OF CONFORZANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: Alsys

Ada Validation Facility: AFNOR, Tour Europe Cedex 7,
F-92080 Paris la DMfense

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: AlsyCOMP_019 Version 4.1

Host Architecture ISA: Zenith Z-248 Model 50
OS&VER #: MS/DOS, Version 3.2

Target Architecture ISA: Intel isBC 286/12 single board computer

Implementor's Declaration

I, the undersigned, representing Alsys, have implemented no deliberate
extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that Alsys is the
owner of record of the Ada language compiler(s) listed above and, as
such, is responsible for maintaining said compiler(s) in conformance
to ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language compiler(s) listed in this declaration shall be made only in
tbe owner's corporate name.

t)A I Date 'le i- z i,
Alsys
Mike Blanchette
Vice President and Director of Enginecring

24

DECLARATION OF CONFORMANCE

Owner's Declaration

I, the undersigned, representing Alsys, take full responsibility for
implementation and maintenance of the Ada compiler(s) listed above,
and agree to the public disclosure of the final Validation Summary
Report. I further agree to continue to comply with the Ada trademark
policy, as defined by the Ada Joint Program Office. I declare that all
of the Ada language compilers listed, and their host/target
performance, are in compliance with the Ada Language Standard
ANSI/MIL-STD-1815A.

Ilk Date 1,1 >"

Alsys
Mike Blanchette
Vice President and Director of Engineering

25

TEST PARAMETERS

APPENDIX B

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

$ACCSIZE 32
An integer literal whose value
is the number of bits suffieient
to hold any value of an access
type.

$BIGIDl (254 * 'A') & '1'
Identifier the size of the
maximum input line length
with varying last character.

SBIGID2 (254 * 'A) & '2'
Identifier the size of the
maximum input line length
with varying last character.

SBIGID3 (126 * 'A') & '3' & (128 * 'A')
Identifier the size of the
maximum input line length
with varying middle character.

$BIGID4 (126 * 'A') & '4' & (128 * 'A')
Identifier the size of the
maximum input line length
with varying middle character.

26

TEST PARAMETERS

Name and Meaning Value

$BIG_INTLIT (252 * '0') & '298'
An integer literal of value
298 with enough leading zeroes
so that it is the size of the
maximum line length.

SBIGREALLIT (250 * '0') & '690.0'
A universal real literal of
value 690.0 with enough
leading zeroes to be the size
of the maximum line length.

$BIGSTRINGI fit. & (127 * 'A') &
A string literal which when
catenated with BIGSTRING2
yields the image of BIGID1.

SBIGSTRING2 ... & (127 I 'A') & "1"'

A string literal which when
catenated to the end of
BIG_STRING1 yields the image
of BIGIDI.

SBLANKS (235 * '

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 214783647
A universal integer literal whose
value is TEXT_IO.COUNT'LAST.

SDEFAULT MEM SIZE 655360
An integer literal whose value
is SYSTEM.MEMORYSIZE.

SDEFAULT_- STOR_- UNIT 8
An integer literal whose value
is SYSTEM.STORAGEUNIT.

$DEFAULTSYSNAME I_80X86
The value of the constant
SYSTEM.SYSTEMNAME.

SDELTADOC 2#1.0#E-31
A real literal whose value is
SYSTEM.FINEDELTA.

27

TEST PARAMZiRS

Name and Meaning Value

$FIELDLAST 255
A universal Anteger literal whose
value is TEXTIO.FIELD'LAST.

SFIXEDNAME NOSUCHFIXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOATNAME NOSUCHTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONG-FLOAT.

SGREATERTHANDURATION 2_097_151.999_023_437_51
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGAEATERTHANDURATIONBASELAST 3_000_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 10
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNALFILENAME1 ILLEGAL\!S%^&*()/_+"
An external file name which
contains invalid characters.

$ILLEGALEXTERNALFILENAME2 !SV&*()?/)(*&\iSV
An external file name which
is too long.

SINTEGERFIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 32767
A universal integer literal
whose value is INTEGER'LAST.

28

TEST PARAMETERS

Name and Meaning Value

SINTEGERLASTPLUSI 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

SLESSTHAN-DURATION -2_097_152.5
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESSTHANDURATIONBASEFIRST -3000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOWPRIORITY 1
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSADOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

SAXDIGITS 15
Maximum digits supported for
floating-point types.

SMAXINLEN 255
Maximum input line length
permitted by the implementation.

SMAX_- INT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

SMAXINTPLUS_1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+I.

SMAX LENINTBASEDLITERAL '42:' & (250 * '0') & '11:'
A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

29

TEST PARAMETERS

Name and Meaning Value

$MAXLEN REAL BASEDLITERAL '16:' & (248 * '0') & 'F.E:'
A universal real based literal
whose value is 16: F.E: with
enough leading zeroes in the
mantissa to be MAX IN LEN lona.

SMAX_- STRINGLITERAL ti"f & (253 * 'A') &
A string literal of size
MAXIN LEN, including the quote
characters.

SMININT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

SMINTASK-SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
NULL;" as the only statement in
its body.

SNAME NOSUCHTYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT-FLOAT, SHORTINTEGER,
LONGFLOAT, or LONG INTEGER.

SNAMELIST I_80X86
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEGBASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit falls
in the sign bit position of the
representation for SYSTEM.MAXINT.

SNEW_7MEMSIZE 655360
An integer literal whose value
is a permitted argument for
pragma memorysize, other than
DEFAULT MEMSIZE. If there is
no other value, then use
DEFAULTMEMSIZE.

30

TEST PARAMETERS

Name and Meaning Value

$NEWSTORUNIT 8
An integer literal whose value
is a permitted argument for
pragma storage_unit, other than
DEFAULTSTORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

SNEWSYS NAME I_80X86
A value of the type SYSTEM.NAME,
other than $DEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

$TASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one inout
parameter.

STICK 1.0/18.2
A real literal whose value is
SYSTEM.TICK.

31

WITHDRAN TESTS

APPENDIX C

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 36 tests had been withdrawn at the
time of validation testing for the reasons indicated. A reference of
the form AI-ddddd is to an Ada Commentary.

A39005G This test unreasonably expects a component clause to
pack an array component into a minimum size (line 30).

B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a
selective wait alternative (line 31).

BC3009B This test wrongly expects that circular instantiations
will be detected in several compilation units even
though none of the units is illegal with respect to the
units it depends.on; by AI-00256, the illegality need
not be detected until execution is attempted (line 95).

CD2A62D This test wrongly requires that an array object's size
be no greater than 10 although its subtype's size was
specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests] These tests
wrongly attempt to check the size of objects of a
derived type (for which a 'SIZE length clause is given)
by passing them to a derived subprogram (which
implicitly converts them to the parent type (Ada
standard 3.4:14)). Additionally, they use the 'SIZE
length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84N & M, & CD50110 These tests assume that
dependent tasks will terminate while the main program
executes a loop that simply tests for task termination;
this is not the case, and -Lhe main program may loop
indefinitely (lines 74, 85, 86 & 96, 86 & 96, and 58,
resp.).

CD2B15C & CD7205C These tests expect that a 'STORAGE-SIZE length
clause provides precise control over the number of
designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

32

WITHDRAWN TESTS

CD5007B This test wrongly expects an implicitly declared
subprogram to be at the address that is specified for an
unrelated subprogram (line 303).

CD7105A This test requires that. successive calls to
CALENDAR.CLOCK change by at least SYSTEM.TICK; however,
by Commentary AI-00201, it is only the expected
frequency of change that must be at least SYSTEM.TICK--
particular instances of change may be less (line 29).

CD7203B, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation is considered
problematic by the WG9 ARG.

CD7205D This test checks an invalid test objective: it treats
the specification of storage to be reserved for a task's
activation as though it were like the specification of
storage for a collection.

CE2107I This test requires that objects of two similar scalar
types be distinguished when read from a file--DATAERROR
is expected to be raised by an attempt to read one
object as of the other type. However, it is not clear
exactly how the Ada standard 14.2.4:4 is to be
interpreted; thus, this test objective is not considered
valid. (line 90).

CE3111C This test requires certain behavior, when two files are
associated with the same cxternal file, that is not

.required by the Ada standard.

CE3301A This test contains several calls to ENDOFLINE &
ENDOFPAGE that have no parameter: these calls were
intended to specify a file, not to refer to
STANDARDINPUT (lines 103, 107, 118, 132, & 136).

CE3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUT ERROR is
raised by a subsequent PUT operation. But the former
operation will generally raise an exception due to a
lack of available disk space, and the test would thus
encumber validation testing.

33

APPENDIX F OF THE Ada STANDARD

APPENDIX D

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the AlsyCOMP_019, Version
4.1, are described in the following sections, which discuss topics in
Appenaix F of the Ada Standard. Implementation-specific portions of
the package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32_767;

type SHORT_INTEGER is range -128 .. 127;

type LONGINTEGER is range -2_147_483_648 .. 2_147_483647;

type FLOAT is digits 6 range
-2#1.111_1111_1111_1111_1111_1111#E+127

2#1.111_I1111I11_1111_I1111111#E+127;

type LONGFLOAT is digits 15 range
-2#1.rl1111_1111_1111_IIII1111_1111_I111_1111_1111_1111_1111_1111#E1023

2#1.1111_1111_1111_1111_1111_1111_1111_1111_11111111_1111_1111_111#EI023;
type DURATION is delta 0.001 range -2097152.0 .. +2097152.0;

end STANDARD;

34

Copyright 1988 by Alsys

All rights reserved. No part of this document may be reproduced in
any form or by any means without permission in writing from Alsys.

Printed: December 1988

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine whether
such changes have been made.

Alsys, AdaWorld AdaProbe, AdaXref, AdaReformat, and AdaMake are registered trademarks of Alsy.

Microsoft, MS-DOS and MS ae registered trademarks of Microsoft Corporation.

IBM, PC AT, PS/2 and PC-DOS am registered trademarks of International Business Machines Corporation.
INTEL is a registered trademark of Insel Corporation.

C

TABLE OF CONTENTS

APPENDIX F

1 Implementation- Dependent Pragmas 2
1.1 INLINE 2
1.2 INTERFACE
1.3 INTERFACENAME 2
1.4 INDENT 4
1.5 Other Pragmas 4

2 Implementation- Dependent Attributes 4
2.1 P'lS ARRAY 4
2.2 P'RECORD DESCRIPTOR, P-ARRAYDESCRIPTOR 4
2.3 E'EXCEPTIONCODE 4

3 Specification of the package SYSTEM 5

4 Support for Representation Clauses 8
4.1 Enumeration Types 8

4.1.1 Enumeration Literal Encoding 8
4.1.2 Enumeration Types and Object Sizes 9

4.2 Integer Types 10
4.2.1 Integer Type Representation 10
4.2.2 Integer Type and Object Size II
Minimum size of an integer subtype 11

4.3 Floating Point Types 12
4.3.1 Floating Point Type Representation 12
4.3.2 Floating Point Type and Object Size 13

4.4 Fixed Point Types 13
4.4.1 Fixed Point Type Representation 13
4.4.2 Fixed Point Type and Object Size 14

4.5 Access Types and Collections 15
4.6 Task Types 16
4.7 Array Types 16

4.7.1 Array Layout and Structure and Pragma PACK 16
4.7.2 Array Subtype and Object Size 19

4.8 Record Types 20
4.8.1 Basic Record Structure 20

Table of Contents

4.8.2 Indirect components 21
4.8.3 Implicit components 24
4.8.3.1 RECORD SIZE 25
4.8.3.2 VARIANTINDEX 25
4.8.3.3 ARRAY DESCRIPTOR 26
4.8.3.4 RECORD DESCRIPTOR 27
4.8.3.5 Suppression of Implicit Components 27
4.8.4 Size of Record Types and Objects 28

5 Conventions for Implementation-Generated Names 28

6 Address Clauses 29
6.1 Address Clauses for Objects 29
6.2 Address Clauses for Program Units 29
6.3 Address Clauses for Interrupt Entries 29

7 Unchecked Conversions 30

8 Input-Output Packages 30
8.1 Accessing Devices 30
8.2 File Names and the FORM Parameter. 30
8.3 Sequential Files 31
8.4 Direct Files 31
8.5 Text Files 31
8.6 The Need to Close a File Explicitly 32
8.7 Limitation on the procedure RESET 32
8.10 Sharing of External Files and Tasking Issues 32

9 Characteristics of Numeric Types 33
9.1 Integer Types 33
9.2 Floating Point Type Attributes 33
9.3 Attributes of Type DURATION 34

10 Other Implementation-Dependent Characteristics 34
10.1 Use of the Floating-Point Coprocessor (80287) 34
10.2 Characteristics of the Heap 35
10.3 Characteristics of Tasks 35
10.4 Definition of a Main Subprogram 36
10.5 Ordering of Compilation Units 36

11 Limitations 36
11.1 Compiler Limitations 36
11.2 Hardware Related Limitations 36

Alsys i80x86 Ada Cross Compilation System. Appendix F, Version 4.2

INDEX 38

Table of Contents

APPENDIX F

Implementation - Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys
t80x86 Ada Cross Compilation System. This appendix is a required part of the
Reference Manual for the Ada Programming Language (called the RM in this appendix).

The sections of this appendix are as follows:

1. The form, allowed places, and effect of every implementation-dependent
pragma.

2. The name and the type of every implementation-dependent attribute.

3. The specification of the package SYSTEM.

4. The description of the representation clauses.

5. The conventions used for any implementation-generated name denoting im-
plementation-dependent components.

6. The interpretation of expressions that appear in address clauses, including
those for interrupts.

7. Any restrictions on unchecked conversions.

8. Any implementation-dependent characteristics of the input-output packages.

9. Characteristics of numeric types.

10. Other implementation -dependent characteristics.

11. Compiler limitations.

-The name Alsys Runtime Executive Programs or simply Runtime Executive refers to the
runtime library routines provided for all Ada programs. These routines implement the
Ada heap, exceptions, tasking control, and other utility functions.

General systems programming notes are given in another document, the Application De-
veloper's Guide (for example, parameter passing conventions needed for interface with
assembly routines).

Appendix F. Implementation- Dependent Characteristics

1 Implementation-Dependent Pragmas

1.1 INLINE

Pragma INLINE is fully supported; however, it is not possible to infine a subprogram in
a declarative part.

1.2 INTERFACE

Ada programs can interface with subprograms written in Assembler and other languages
through the use of the predefined pragma INTERFACE and the implementation-defined
pragma INTERFACENAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of
the programming language for which parameter passing conventions will be generated.
Pragma INTERFACE takes the form specified in the RM:

pragma INTERFACE (languagename, subprogram-name);

where,

* language-name is ASSEMBLER, ADA, or C.

* subprogram name is the name used within the Ada program to refer to the
interfaced subprogram.

The only language names accepted by pragma INTERFACE are ASSEMBLER, ADA and
C. The full implementation requirements for writing pragma INTERFACE subprograms
are described in the Application Developer's Guide.

The language name used in the pragma INTERFACE does not have to have any re-
lationship to the language actually used to write the interfaced subprogram. It is used
only to tell the Compiler how to generate subprogram calls; that is, what kind of
parameter passing techniques to use. The programmer can interface Ada programs with
subroutines written in any other (compiled) language by understanding the mechanisms
used for parameter passing by the Alsys i80x86 Ada Cross Compilation System and the
corresponding mechanisms of the chosen external language.

1.3 INTERFACENAME

Pragma INTERFACENAME associates the name of the interfaced subprogram with
the external name of the interfaced subprogram. If pragma INTERFACENAME is not
used, then the two names are assumed to be identical. This pragma takes the form:

pragma INTERFACE-NAME (subprogram-name, string_literal);

2 Alsys i80x86 Ada Cross Compilation System. Appendix F. Version 4.2

where,

" subprogram name is the name used within the Ada program to refer to the
interfaced subprogram.

" stringliteral is the name by which the interfaced subprogram is referred to
at link time.

The pragma INTERFACENAME is used to identify routines in other languages that
are not named with legal Ada identifiers. Ada identifiers can only contain letters, dig-
its, or underscores, whereas many linkers allow external names to contain other
characters, for example, the dollar sign (S) or commercial at sign (@). These characters
can be specified in the string literal argument of the pragma INTERFACE-NAME.

The pragma INTERFACE NAME is allowed at the same places of an Ada program as
the pragma INTERFACE. (Location restrictions can be found in section 13.9 of the
RM.) However, the pragma INTERFACENAME must always occur after the pragma
INTERFACE declaration for the interfaced subprogram.

The stringliteral of the pragma INTERFACE NAME is passed through unchanged
into the Intel OMF86 object file. The maximum length of the stringliteral is 40
characters. This limit is not checked by the Compiler, but the string is truncated by the
Binder to meet the Intel object module format standard.

The user must be aware however, that some tools from other vendors do not fully sup-
port the standard object file format and may restrict the length of symbols. For exam-
ple, the IBM and Microsoft assemblers silently truncate symbols at 31 characters.

The Runtime Executive contains several external identifiers. All such identifiers begin
with either the string "ADA@" or the string "ADAS@". Accordingly, names prefixed by
"ADA@" or "ADAS@" should be avoided by the user.

Example

package SAMPLE-DATA is

function SAMPLE-DEVICE (X: INTEGER) return INTEGER;

function PROCESS SAMPLE (X: INTEGER) return INTEGER;

private

pragma INTERFACE (ASSEMBLER, SAMPLE DEVICE);

pragnim INTERFACE (ADA, PROCESSSANPLE);

pragmn INTERFACE NAME (SAMPLE-DEVICE, "DEVIOSGET SAMPLE");

end SAMPLEDATA;

Appendix F, Implementation-Dependent Characteristics 3

1.4 INDENT

Pragma INDENT is only used with AdaReformat. AdaReformat is the Alsys reformatter
which offers the functionalities of a pretty-printer in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter. The line

pragma INDENT(OFF);

causes AdaReformat not to modify the source lines after this pragma, while

pragma INDENT(ON);

causes AdaReformat to resume its action after this pragma.

1.5 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses and records (Chapter 4).

Pragma PRIORITY is accepted with the range of priorities running from I to 10 (see the
definition of the predefined package SYSTEM in Section 3). Undefined priority (no
pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress all checks in a given compi-
lation by the use of the Compiler option CHECKS. (See Chapter 4 of the User's Guide.)

2 Implementation-Dependent Attributes

2.1 P'ISARRAY

For a prefix P that denotes any type or subtype, this attribute yields the value TRUE if
P is an array type or an array subtype; otherwise, it yields the value FALSE.

2.2 P'RECORDDESCRIPTOR, P'ARRAYDESCRIPTOR

These attributes are used to control the representation of implicit components of a
record. (See Section 4.8 for more details.)

2.3 E'EXCEPTIONCODE

For a prefix E that denotes an exception name, this attribute yields a value that repre-
sents the internal code of the exception. The value of this attribute is of the type
INTEGER.

4 Alsys i80x86 Ada Cross Compilation System. Appendix F, Version 4.2

3 Specification of the package SYSTEM

The implementation does not allow the recompilation of package SYSTEM.

package SYSTEM is

-- *(1) Required Definitions.

type NAME is (1 80x86);

SYSTEM NAME : constant NAME := 1 80x86;

STORAGE-UNIT : constant 8;

MEMORY SIZE constant := 640 * 1024;

-- System-Dependent Named Numbers:

MININT : constant :a -(2 *31);

MAX INT constant := 2*31 - 1;

MAX DIGITS : constant : 15;

MAX-MANTISSA constant : 31;

FINE-DELTA constant := 2#1.0#E-31;

For the high-resolution timer, the clock resolution is

-- 1.0 / 1024.0.

TICK : constant :a 1.0 / 18.2;

-- Other System-Dependent Declarations:

subtype PRIORITY is INTEGER range 1 .. 10;

The type ADDRESS is, in fact, implemented as a

segment:offset pair.

type ADDRESS is private;

NULL-ADDRESS: constant ADDRESS;

.. t (2) MACNINE TYPE CONVERSIONS '

-- If the word / doubte-word operations below are used on

-- ADDRESS, then MSM yields the segment and LSW yields the

-- offset.

Appendix F, Implementation- Dependent Characteristics 5

-- In the operations beLow, a BYTE TYPE is any simLe type

imtemented on 8-bits (for exampte, SHORTINTEGER), a WORDTYPE is

any simple type imlemented on 16-bits (for example, INTEGER), and

-- a DOUIBLE WORD TYPE is any simple type implemented on

-- 32-bits (for exanpte, LONGINTEGER, FLOAT, ADDRESS).

-- Byte -- > Word conversions:

Get the most significant byte:

generic

type BYTETYPE is private;

type WORDTYPE is private;

function MSB (W: WORD-TYPE) return BYTE TYPE;

-- Get the least significant byte:

generic

type BYTETYPE is private;

type WORDTYPE is private;

function LSB (W: WORD-TYPE) return BYTE TYPE;

-- Compose a word from two bytes:

generic

type BYTETYPE is private;

type WORDTYPE is private;

function WORD (MSB, LSB: BYTE-TYPE) return WORD-TYPE;

-- Word -=- DoubLe-Word conversions:

-- Get the most significant word:

generic

type WORD TYPE is private;

type DOUBLE WORD_TYPE is private;

function MSW (M: DOUBLE WORD TYPE) return WORD TYPE;

-- Get the least significant word:

generic

type WORD-TYPE is private;

type DOUBLE WORDTYPE is private;

function LSW(W: DOUBLE-WORDTYPE) return WORDTYPE;

-- Compose a DATA double word from two words.

generic

type WORD_TYPE is private;

-- The foLlowing type mut be a data type

-- (for example, LONG INTEGER):

type DATA DO"LEWORD is private;

function DOUBLE WORD (MSW, LISW: WORD-TYPE)

return DATA DOUBLE WORD;

6 Alsys i80x86 Ada Cross Compilation System. Appendix F. Version 4.2

-- Compose a REFERENCE double word from two words.

generic

type WORD TYPE is private;

The following type must be a reference type

-- (for example, access or ADDRESS):

type REF DOUBLEWORD is private;

function REFERENCE (SEGMENT, OFFSET: WORD-TYPE)

return RE FDOUBLEWORD;

* (3) OPERATIONS ON ADDRESS

-- You can get an address via 'ADDRESS attribute or by

-i instantiating the function REFERENCE, above, with

-- appropriate types.

Some addresses are used by the Compiler. For example,

-- the display is located at the tow end of the DS segment,

and addresses SS:O through SS:128 hold the task control

-- block and other information. Writing into these areas

will have unpredictable results.

-- Note that no operations are defined to get the values of

the segment registers, but if it is necessary an

-- interfaced function can be written.

generic

type OBJECT is private;

function FETCHFROMADDRESS (FROM: ADDRESS) return OBJECT;

generic

type OBJECT is private;

procedure ASSIGNTOADDRESS (OBJ: OBJECT; TO: ADDRESS);

private

end SYSTEM;

Appendix F. Implementation-Dependent Characteristics 7

4 Support for Representation Clauses

This section explains how objects are represented and allocated by the Alsys i80x86 Ada
Cross Compilation System and how it. is possible to control this using representation
clauses. Applicable restrictions on representation clauses are also described.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the representa-
tion of the corresponding objects is described.

Except in the case of array and record types, the description for each class of type is
independent of the others. To understand the representation of array and record types it
is necessary to understand first the representation of their components.

Apart frojt implementation defined pragmas, Ada provides three means to control the
size of objects:

" a (predefined) pragma PACK, applicable to array types

" a record representation clause

" a size specification

For each class of types the effect of a size specification is described. Interactions among
size specifications, packing and record representation clauses is described under the
discussion of array and record types.

Representation clauses on derived record types or derived tasks types are not supported.

Size representation clauses on types derived from private types are not supported when
the derived type is declared outside the private part of the defining package.

4.1 Enumeration Types

4.1.1 Enumeration Literal Encoding

When no enumeration representation clause applies to an enumeration type, the internal
code associated with an enumeration literal is the position number of the enumeration
literal. Then, for an enumeration type with n elements, the internal codes are the inte-
gers 0, 1, 2, .. , n-I.

"An enumeration representation clause can be provided to specify the value of each
internal code as described in RM 13.3. The Alsys compiler fully implements enumeration
representation clauses.

8 Alsys i80x86 Ada Cross Compilation System. Appendix F. Version 4.2

As internal codes must be machine integers the internal codes provided by an enumera-
tion representation clause must be in the range -23 .. - 1.

An enumeration value is always represented by its internal code in the program gener-
ated by the compiler.

4.1.2 Enumeration Types and Object Sizes

Minimum si:e of an enumeration subtiype

The minimum possible size of an enumeration subtype is the minimum number of bits
that is necessary for representing the internal codes of the subtype values in normal
binary form.

A static subtype, with a null range has a minimum size.of 1. Otherwise, if m and M are
the values of the internal codes associated with the first and last enumeration values of
the subtype, then its minimum size L is determined as follows. For m >= C, L is the
smallest positive integer such that M <= 2 L-

1
. For m < 0, L is the smallest positive inte-

ger such that -2L-1 <- m and M <- 2L-l. For example:

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACK ANDWHITE is COLOR range BLACK .. WHITE;
-- The minimum size of BLACKANDWHITE is 2 bits.

subtype BLACK ORWHITE is BLACKANDWHITE range X .. X;
-- Assuming that X is not static, the minimum size of BLACKORWHITE is
-- 2 bits (the same as the minimum size of its type mark
BLACKANDWHITE).

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype. the
objects of that type or first named subtype are represented as signed machine integers.
The machine provides 8, 16 and 32 bit integers, and the compiler selects automatically

-the smallest signed machine integer which can hold each of the internal codes of the
enumeration type (or subtype). The size of the enumeration type and of any of its sub-
types is thus 8, 16 or 32 bits.
When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to
a first named subtype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies:

Appendix F. Implementation-Dependent Characteristics 9

type EXTENDED is
(-- The usual ASCII character set.
NUL, SOH, STX, ETX. EOT, ENQ, ACK, BEL,

'x, 9 y', 'z, '' , '' ~, DEL,

-- Extended characters
CCEDILLACAP, UUMLAUT, EACUTE, ...);

for EXTENDED'SIZE use 8,
-- The size of type EXTENDED will be one byte. Its objects will be represented
-- as unsigned 8 bit integers.

The Alsys compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

4.2 Integer Types

There are three predefined integer types in the Alsys implementation for I80x86
machines:

type SHORTINTEGER is range -2*07 .. 2**071;
type INTEGER is range -2"*15 .. 2**15-1;

type LONGINTEGER is range -2"31 .. 2*31- 1;

4.2.1 Integer Type Representation

An integer type declared by a declaration of the form:

type T is range L .. R;

is implicitly derived from a predefined integer type. The compiler automatically selects
the predefined integer type whose range is the smallest that contains the values L to R

4inclusive.

Binary code is used to represent integer values. Negative numbers are represented using
two's complement.

10 Alsys i80x86 Ada Cross Compilation System. Appendix F. Version 4.2

4.2.2 Integer Type and Object Size

Minimum size of an integer subtype

The minimum possible size of an integer subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M
are the lower and upper bounds of the subtype, then its minimum size L is determined
as follows. For m >= 0, L is the smallest positive integer such that M <- 2 L_1 . For
m < 0, L is the smallest positive integer that - 2 L- <= m and M <= 2 1'-l. For example:

subtype S is INTEGER range 0 .. 7,
-- The minimum size of S is 3 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of its type mark S).

Size of an integer subtype

The sizes of the predefined integer types SHORT INTEGER, INTEGER and
LONGINTEGER are respectively 8, 16 and 32 bits.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly. For example:

type S is range 80 .. 100;
-- S is derived from SHORTINTEGER, its size is 8 bits.

type J is range 0 .. 255;
-- J is derived from INTEGER, its size is 16 bits.

type N is new I range 80 .. 100;
-- N is indirectly derived from INTEGER, its size is 16 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S Is range 80 .. 100;
for S'SIZE use 32;
-- S is derived from SHORTINTEGER, but its size is 32 bits
-- because of the size specification.

Appendix F, Implementation-Dependent Characteristics I)

type J is range 0 .. 255;
for J'SIZE use 8;
-- J is derived from INTEGER, but its size is 8 bits because
-= of the size specification.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, but its size is 8 bits
-- because N inherits the size specification of J.

Size of the objects of an integer subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

4.3 Floating Point Types

There are two predefined floating point types in the Alsys implementation for I80x86
machines:

type FLOAT is
digits 6 range -(2.0 - 2.0**(-23))'2.0*127 .. (2.0 - 2.0**(-3))'2.0*127;

type LONGFLOAT is
digits 15 range -(2.0 - 2.0**(-51))*2.0**1023 .. (2.0 - 2.0*(-5l))*2.0*1023;

4.3.1 Floating Point Type Representation

A floating point type declared by a declaration of the form:

type T is digits D [range L .. R];

is implicitly derived from a predefined floating point type. The compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L to R inclusive.

In the program generated by the compiler, floating point values are represented using
the IEEE standard formats for single and double floats.

The values of the predefined type FLOAT are represented using the single float format.
The values of the predefined type LONG FLOAT are represented using the double
float format. The values of any other floating point type are represented in the same
way as the values of the predefined type from which it derives, directly or indirectly.

12 Alsys i80x86 Ada Cross Compilation System. Appendix F. Version 4.2

4.3.2 Floating Point Type and Object Size

The minimum possible size of a floating point subtype is 32 bits if its base type is
FLOAT or a type derived from FLOAT- it is 64 bits if its base type is LONGFLOAT
or a type derived from LONGFLOAT.

The sizes of the predefined floating point types FLOAT and LONGFLOAT are
respectively 32 and 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype us-
ing a size specification is its usual size (32 or 64 bits).

An object of a floating point subtype has the same size as its subtype.

4.4 Fixed Point Types

4.4.1 Fixed Point Type Representation

If no specification of small applies to a fixed point type, then the value of small is
determined by the value of delta as defined by RM 3.5.9.

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

To implement fixed point types, the Alsys compiler for I80x86 machines uses a set of
anonymous predefined types of the form:

type SHORT FIXED is delta D range (-2.0"*07-1)*S .. 2.O"*07S;
for SHORT FIXED'SMALL use S;

type FIXED is delta D range (-2.0*15-1)*S .. 2.O**15S;
for FIXED'SMALL use S;

type LONG FIXED is delta D range (-2.0"*31-1)*S .. 2.0"'31"S;

for LONG _FIXED'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

-A fixed point type declared by a declaration of the form:

type T is delta D range L .. R;

possibly with a small specification:

for T'SMALL use S;

Appendix F, Implementation- Dependent Characteristics 13

is implicitly derived from a predefined fixed point type. The compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta of T and whose range is the shortest that includes the values L to R inclusive.

In the program generated by the compiler, a safe value V of a fixed point subtype F is
represented as the integer:

V / F'BASE'SMALL

4.4.2 Fixed Point Type and Object Size

Minimum size of a fixed point subtype

The minimum possible size of a fixed point subtype is the minimum number of binary
digits that is necessary for representing the values of the range of the subtype using the
small of the base type.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S
being the bounds of the subtype, if i and I are the integer representations of m and M,
the smallest and the greatest model numbers of the base type such that s < m and M < S,
then the minimum size L is determined as follows. For i >= 0, L is the smallest positive
integer such that I <= 2L'1. For i < 0, L is the smallest positive integer such that

-i <= i and I <- 2'1.

type F is delta 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
-- The minimum size of S is 7 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size of a fixed point subtype

The sizes of the predefined fixed point types SHORTFIXED, FIXED and
LONGFIXED are respectively 8, 16 and 32 bits.

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which
it derives directly or indirectly. For example:

type S Is delta 0.01 range 0.8 .. 1.0;
-- S is derived from an 8 bit predefined fixed type, its size is 8 bits.

type F Is delta 0.01 range 0.0 .. 2.0;
-- F is derived from a 16 bit predefined fixed type, its size is 16 bits.

14 Alsys i80x86 Ada Cross Compilation System. Appendix F, Version 4.2

type N is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, its size is 16 bits.

When a size specification is applied to a fixed point type, this fixed point type and each
of its subtypes has the size specified by the length clause. The same ule applies to a
first named subtype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies:

type S is delta 0.01 range 0.8 .. 1.0;
for S'SIZE use 32;
-- S is derived from an 8 bit predefined fixed type, but its size is 32 bits
== because of the size specification.

type F is delta 0.01 range 0.0 .. 2.0;
for F'SIZE use 8;
-- F is derived from a 16 bit predefined fixed type, but its size is 8 bits
- because of the size specification.

type N is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, but its size is
- 8 bits because N inherits the size specification of F.

The Alsys compiler fully implements size specifications. Nevertheless, as fixed point
objects are represented using machine integers, the specified length cannot be greater
than 32 bits.

Si:e of the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

4.5 Access Types and Collections

Access Types and Objects of Access Types

The only size that can be specified for an access type using a size specification is its
usual size (32 bits).

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always 32 bits long.

Collection Size

As described in RM 13.2, a specification of collection size can be provided in order to
reserve storage space for the collection of an access type.

Appendix F. Implementation-Dependent Characteristics 15

When no STORAGE __SIZE specification applies to an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGE-SIZE is then 0.

The maximum size allowed for a collection is 64k bytes.

4.6 Task Types

Storage for a task activation

As described in RM 13.2, a length clause can be used to specify the storage space (that
is, the stack size) for the activation of each of the tasks of a given type. Alsys also al-
lows the task stack size, for all tasks, to be established using a Binder option. If a
length clause is given for a task type, the value indicated at bind time is ignored for this
task type, and the length clause is obeyed. When no length clause is used to specify the
storagL space to be reserved for a task activation, the storage space indicated at bind
time is used for this activation.

A length clause may not be applied to a derived task type. The same storage space is
reserved for the activation of a task of a derived type as for the activation of a task of
the parent type.

The minimum size of a task subtype is 32 bits.

A size specification has no effect on a task type. The only size that can be specified
using such a length clause is its usual size (32 bits).

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always 32 bits long.

4.7 Array Types

Each array is allocated in a contiguous area of storage units. All the components have
the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

4.7.1 Array Layout and Structure and Pragma PACK

Coampam t Gap Caipaent Gap Coqnn t Gap

16 Alsys i80x86 Ada Cross Compilation System. Appendix F, Version 4.2

If pragma PACK is not specified for an array. the size of the components is the size of
the subtype of the components:

type A is array (I .. 8) of BOOLEAN;
-- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMAL DIGIT is range 0 .. 9;
for DECIMALDIGIT"SIZE use 4;
type BINARYCODEDDECIMAL is

array (INTEGER range <>) of DECIMAL DIGIT;
-- The size of the type DECIMALDIGIT is 4 bits. Thus in an array of
-- type BINARY CODEDDECIMAL each component will be represented on
-- 4 bits as in the usual BCD representation.

If pragma PACK is specified for an array and its components are neither records nor
arrays, the size of the components is the minimum size of the subtype of the compo-
nents:

type A is array (I .. 8) of BOOLEAN;
pragma PACK(A);
-- The size of the components of A is the minimum size of the type BOOLEAN:
-- I bit.

type DECIMAL DIGIT is range 0 .. 9;
for DECIMAL DIGIT'SIZE use 32;
type BINARY CODED DECIMAL is

array (INTEGER range <>) of DECIMALDIGIT;
pragma PACK(BINARYCODED DECIMAL);
-- The size of the type DECIMAL _DIGIT is 32 bits, but, as
-- BINARY_'CODEDDECIMAL is packed, each component of an array of this
-- type will be represented on 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays, since records and arrays may be assigned addresses consistent with the
alignment of their subtypes.

Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the compiler may choose a representa-
tion with a gap after each component; the aim of the insertion of such gaps is to opti--
mize access to the array components and to their subcomponenti. The size of the gap is

-chosen so that the relative displacement of consecutive components is a multiple of the
alignment of the subtype of the components. This strategy allows each component and
subcomponent to have an address consistent with the alignment of its subtype:

Appendix F, Implemenzation-Dependeni Characteristics 17

type R is
record

K: INTEGER;
B: BOOLEAN;

end record;
for R use

record
K at 0 range 0 15;
B at 2 range 0 0;

end record;
-- Record type R is byte aligned. Its size is 17 bits.

type A is array (I .. 10) of R;
-- A gap of 7 bits is inserted after each component in order to respect the
-- alignment of type R. The size of an array of type A will be 240 bits.

X KY 6II Eli]

Component Gap Component Gap Component Gap

Array' of type A: each subcomponent K has an even offset.

If a size specification applies to the subtype of the components or if the array is packed,
no gaps are inserted:

type R is
record

K: INTEGER;
B: BOOLEAN;

end record;

type A is array (1 .. 10) of R;
pragma PACK(A);
-- There is no gap in an array of type A because
-- A is packed.
-- The size of an object of type A will be 270 bits.

type NR is new R;
for NR'SIZE use 24;

type B is array (I .. 10) of NR4
-- There is no gap in an array of type B because
-- NR has a size specification.
-- The size of an object of type B will be 240 bits.

18 Alsys i80x86 Ada Cross Compilation System. Appendix F. Version 4.2

iK ii II

Componenit Component

Array of type A or B

4.7.2 Array Subtype and Object Size

Size of an array suhtype

The sizu of an array subtype is obtained by multiplying tnt number of its components
by the sum of the size of the components and the size of the gaps (if any). If the sub-
type is unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

a if it has non-static constraints or is an unconstrained array type with non-
static index subtypes (because the number of components can then only be
determined at run time).

8 if the components are records or arrays and their constraints or the con-
straints of their subcomponents (if any) are not static (because the size of the
components and the size of the gaps can then only be determined at run
time).

As has been indicated above, the effect of a pragma PACK on an array type is to sup-
press the gaps. The consequence of packing an array type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the con-
straints of their subcomponents (if any) are not static, the compiler ignores any pragma
PACK applied to the array type but issues a warning message. Apart from this limita-
tion, array packing is fully implemented by the Alsys compiler.

A size specification applied to an array type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of an array is as expected by
the application.

'Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of
the object.

Appendix F. Implememnation-Dependent Characteristics 19

4.8 Record Types

4.8.1 Basic Record Structure

Layout of a record

Each record is allocated in a contiguous area of storage units. The size of a record com-
ponent depends on its type.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in RM 13.4. In the Alsys implementa-
tion for 180x86 machines there is no restriction on the position that can be specified for
a component of a record. If a component is not a record or an array, its size can be any
size from the minimum size to the size of its subtype. If a component is a record or an
array, its size must be the size of its subtype:

type DEVICEINFORECORD is

record

3IT15 : BOOLEAN; -- Bit 15 (reserved)

CTRL : BOOLEAN; -- Bit 14 (true if control strings processed)

NETUORK : BOOLEAN; -- Bit 13 (true if device is on network)

•BIT12 : BOOLEAN; -- Bit 12 (reserved)

BIT11 : BOOLEAN; -- Bit 11 (reserved)

BITIO : BOOLEAN; -- Bit 10 (reserved)

BIT9 : BOOLEAN; Bit 9 (reserved)

BITS : BOOLEAN; - Bit 8 (reserved)

ISDEV : BOOLEAN; -- Bit 7 (true if device, false if disk file)

EOF : BOOLEAN; -- Bit 6 (true if at end of file)

BINARY : BOOLEAN; - lit S (true if binary (raw) mode)
BIT4 : BOOLEAN; -- Bit 4 (reserved)

ISCLK : BOOLEAN; fit 3 ,tre if clock device)

ISNUL : BOOLEAN; - Bit 2 (true if NUL device)

ISCOT : BOOLEAN; Bit I (true if console output device)

ISCIN : BOOLEAN; -- Bit 0 (true if console input device)

end record;

for DEVICEINFORECORD use

record

BITIS at 1 range 7 .. 7; -- Bit 15

CTRL at 1 range 6 .. 6; -- Bit 14
NETWORK at 1 range 5 .. 5; -- Bit 13

Bi12 at 1 range 4 ..4; -- Bit 12

BIT11 at I range 3 .. 3; -- Bit 11

SIT1O at 1 range 2 .. 2; -- sit 10
BIT9 at 1 range 1 .. 1; -- Bit 9

BITS at 1 range 0 .. 0; -- SIt8
ISOEV at 0 range 7. 7; -- Bit 7

EOF at Orang 6 .. 6; -- Bit 6

BINARY at O rangeS .. 5; -- it S

BIT4 at 0 range 4 .. 4; -- Bit 4

20 Alsys i80x86 Ada Cross Compilation System, Appendix F. Version 4.2

ISCLK at 0 range 3 .. 3; Bit 3

ISNUL at 0 range 2 .. 2; -B lit 2

ISCOT at 0 range 1 . 1; lit 1

ISCIN at 0 range 0 .. 0; Bit 0

end record;

Pragma PACK has no effect on records. It is unnecessary because record representation

clauses provide full control over record layout.

A record representation clause need not specify the position and the size for every com-

ponent. if no component clause applies to a component of a record, its size is the size

of its subtype.

4.8.2 Indirect components

If the offset of a component cannot be computed at compile time, this offset is stored in

the record objects at run time and used to access the component. Such a component is

said to be indirect while other components are said to be direct:

Beginning of the record

Compile time offset
DIRECT

- Compile time offset
OFFSET

Run time offset

INDIRECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated

at run time and may even depend on the discriminants of the record. We will call these

components dynamic components:

type DEVICE is (SCREEN, PRINTER);

type COLOR is (GREEN, RED, BLUE);

type SERIES is array (POSITIVE range c>) of INTEGER;

Appendix F, Implementation-Dependent Characteristics 21

type GRAPH (L : NATURAL) Is
record

X : SERIES(i L); -- The size of X depends on L
Y : SERIES(I L); -- The size of Y depends on L

end record;

Q: POSITIVE;

type PICTURE (N: NATURAL; D: DEVICE) is
record

F : GRAPH(N); -- The size of F depends on N
S: GRAPH(Q); -- The size of S depends on Q
case D is

when SCREEN ->

C: COLOR;
when PRINTER ->

null;
end case;

end record;

Any component placed after a dynamic component has an offset which cannot be eval-
uated at compile time and is thus indirect. In order to minimize the number of indirect
components, the compiler groups the dynamic components together and places them at
the end of the record:

22 Alsys i80x86 Ada Cross Compilation System. Appendix F. Version 4.2

D t SCREEN D = PRINTER
Nz2 N-1

- Beginning of the record-

S OFFSET S OFFSET -
Compiie time offsets

F OFFSET F OFFSET -

N N

D 0

rC - Run time offsets F

S

The record i'pe PICTURE: F and S are placed at the end of the record

Note that Ada does not allow representation clauses for record components with non-
static bounds [RM 13.4.71, so the compiler's grouping of dynamic components does not
conflict with the use of representation clauses.

Because of this approach, the only indirect components are dynamic components. But
not all dynamic components are necessarily indirect: if there are dynamic components in
a component list which is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at com-
pilation time (the only"dynamic components that are direct components are in this situa-
tion):

Appendix F, Implementaiion- Dependent Characteristics 23

Beginning of the record
Y OFFSET

Compile time offset
L

Compile time offset

Size dependent on discrimsinant L

Run time offset

Y Size dependent on discriminant L

The record type GRAPH. the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to
store the size of any value of the record type (the maximum potential offset). The com-
piler evaluates an upper bound MS of this size and treats an offset as a component hav-
ing an anonymous integer type whose range is 0 .. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name C'OFFSET.

4.8.3 Implicit components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid recom-
putation (which would degrade performance) the compiler stores this information in the
record objects, updates it when the values of the discriminants are modified and uses it
when the objects or its components are accessed. This information is stored in special
components called implicit components.

An implicit component may contain information which is used when the record object
or several of its components are accessed. In this case the component will be included in
any record object (the implicit component is considered to be declared before any
variant part in the record type declaration). There can be two components of this kind;
one is called RECORDSIZE and the other VARIANTINDEX.

On the other hand an implicit component may be used to access a given record compo-
nent. In that case the implicit component exists whenever the record component exists
(the implicit component is considered to be declared at the same place as the record
component). Components of this kind are called ARRAYDESCRIPTORs or
RECORDDESCRIPTORs.

24 Alsys i80x86 Ada Cross Compilation System. Appendix F, Version 4.2

4.8.3.1 RECORDSIZE

This implicit component is created by the compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space neces-
sary to store the current value of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of a RECORDSIZE component may denote a number of bits or a number ofstorage units In general it denotes a number of storage units, but if any component

clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORDSIZE must be large enough to store the maximum
size of any value of the record type. The compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0 .. NIS.

If R is the name of the record type, this implicit component can be denoted in a com-
ponent clause by the implementation generated name R'RECORDSIZE. This allows
user control over the position of the implicit component in the record.

4.8.3.2 VARIANTINDEX

This implicit component is created by the compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used
when a discriminant check is to be done.

Component lists in variant parts that themselves do not contain a variant part are num-
bered. These numbers are the possible values of the implicit component
VARIANTINDEX.

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND: VEHICLE := CAR) is
record

SPEED: INTEGER;
case KIND is

when AIRCRAFT I CAR ->
WHEELS: INTEGER;
case KIND is

when AIRCRAFT > --

WINGSPAN: INTEGER;
when others - -- 2

null;
end case;

Appendix F. Implementaiion- Dependent Characteristics 25

when BOAT-> -- 3
STEAM : BOOLEAN;

when ROCKET -> -- 4
STAGES: INTEGER;

end case;
end record;

The value of the variant index indicates the set of components that are present in a
record value:

Variant Index Set

1 (KIND, SPEED, WHEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 (KIND, SPEED, STEAM)
4 (KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Component Intervat

KIND
SPEED -

WHEELS 1 .. 2
WINGSPAN 1 1
STEAM 3 .. 3
STAGES 4 .

The implicit component VARIANT_INDEX must be large enough to store the number
V of component lists that don't contain variant parts. The compiler treats this implicit
component as having an anonymous integer type whose range is I .. Y.

If R is the name of the record type, this implicit component can be denoted in a com-
ponent clause by the implementation generated name R'VARIANT_INDEX. This
allows user control over the position of the implicit component in the record.

4.8.3.3 ARRAYDESCRIPTOR

An implicit component of this kind is associated by the compiler with each record com-
ponent whose subtype is an anonymous array subtype that depends on a discriminant of
the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAYDESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in specify-
ing the location of a component of this kind using a component clause, size of the com-
ponent may be obtained using the ASSEMBLY parameter in the COMPILE command.

26 Alsys i80x86 Ada Cross Compilation System. Appendix F. Version 4.2

The compiler treats an implicit component of the Kind ARRAYDESCRIPTOR as hav-
ing an anonymous array type. If C is the name of the record component whose subtype
is described by the array descriptor, then this implicit component can be denoted in a
component clause by the implementation generated name C'ARRAY DESCRIPTOR.
This allows user control over the position of the implicit component in the record.

4.8.3.4 RECORDDESCRIPTOR

An implicit component of this kind is associated by the compiler with each record com-
ponent whose subtype is an anonymous record subtype that depends on a discriminant of
the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORDDESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in specify-
ing the location of a component of this kind using a component clause, the size of the
component may be obtained using the ASSEMBLY parameter in the COMPILE com-
mand.

The compiler treats an implicit component of the kind RECORD DESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'RECORDDESCRIPTOR. This allows user control over the position of the implicit
component in the record.

4.8.3.5 Suppression of Implicit Components

The Alsys implementation provides the capability of suppressing the implicit components
RECORDSIZE and/or VARIANTINDEX from a record type. This can be done using
an implementation defined pragma called IMPROVE. The syntax of this pragma is as
follows:

pragma IMPROVE (TIME I SPACE , [ON ->] simple_name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the compiler only inserts a VARIANTINDEX or a
RECORD_SIZE component if this component appears in a record representation clause
that applies to the record type. A record representation clause can thus be used to keep

-one implicit component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a
representation clause is allowed for this type.

Appendix F, Implementation- Dependent Characteristics 27

4.8.4 Size of Record Types and Objects

Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to a whole number of storage units.
The size of a constrained record subtype is obtained by adding the sizes of its compo-
nents and the sizes of its gaps (if any). This size is not computed at compile time

" when the record subtype has non-static constraints,

" when a component is an array or a record and its size is not computed at
compile time.

The size of an unconstrained record subtype is obtained by adding the sizes of the com-
ponents and the sizes of the gaps (if any) of its largest variant. If the size of a compo-
nent or of a gap cannot be evaluated exactly at compile time an upper bound of this size
is used by the compiler to compuLe the subtype size.

A size specification applied to a record type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of a record is as expected by
the application.

Size of an object of a record subtype

An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this
size is less than or equal to 8 kb. If the size of the subtype is greater than this, the
object has the size necessary to store its current value; storage space is allocated and
released as the discriminants of the record change.

5 Conventions for Implementation-Generated Names

The Alsys i80x86 Ada Cross Compilation System may add fields to record objects and
have descriptors in memory for record or array objects. These fields are accessible to
the user through implementation-generated attributes (See Section 2.3).

The following predefined packages are reserved to Alsys and cannot be recompiled in
Version 4.2:

ALSYS.QA_RUNT IM
ALSYS _StC_ 0
ALSYSSBASI CD IRECTI0
ALSYSAS!CSEUENT IAL0

28 Alsys i80x86 Ada Cross Compilation System. Appendix F. Version 4.2

6 Address Clauses

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in RM
13.5. When such a clause applies to an object the compiler does not cause storage to be
allocated for the object. The program accesses the object using the address specified in
the clause. It is the responsibility of the user therefore to make sure that a valid alloca-
tion of storage has been done at the specified address.

An address clause is not allowed for task objects, for unconstrained records whose size is
greater than 8k bytes or for a constant.

There are a number of ways to compose a legal address expression for use in an address
clause. The most direct ways are:

" For the case where the memory is defined in Ada as another object, use the
'ADDRESS attribute to obtain the argument for the address clause for the
second object.

" For the case where an absolute address is known to the programmer, instan-
tiate the generic function SYSTEM.REFERENCE on a 16 bit unsigned inte-
ger type (either from package UNSIGNED, or by use of a length clause on a
derived integer type or subtype) and on type SYSTEM.ADDRESS. Then the
values of the desired segment and offset can be passed as the actual param-
eters to the instantiated function in the simple expression part of the address
clause. See Section 3 for the specification of package SYSTEM.

" For the case where the desired location is memory defined in assembly or
another non-Ada language (is relocatable), an interfaced routine may be used
to obtain the appropriate address from referencing information known to the
other language.

In all cases other than the use of an address attribute, the programmer must ensure that
the segment part of the argument is a selector if the program is to run in protected
mode. Refer to the Application Developers' Guide, Section 5.5 for more information on
protected mode machine oriented programming.

6.2 Address Clauses for Prop'.am Units

Address clauses for program units are not implemented in the current version of the
compiler.

6.3 Address Clauses for Interrupt Entries

Address clauses for interrupt entries are supported. (See Chapter 7 of the Application
Developer's Guide for details.)

Appendix F. Implementation- Dependent Characteristics 29

7 Unchecked Conversions

Unchecked conversions are allowed between any types. It is the programmer's re-
sponsibility to determine if the desired effect is achieved.

8 Input-Output Packages

The RM defines the predefined input-output packages SEQUENTIAL_10,
DIRECT_10, and TEXT_10, and describes how to use the facilities available within
these packages. The RM also defines the package IO_EXCEPTIONS, which specifies
the exceptions that can be raised by the predefined input-output packages.

In addition the RM outlines the package LOW LEVEL_1O, which is concerned with low-
level machine-dependent input-output, such as would possibly be used to write device drivers
or access device registers. LOWLEVEL 10 has not been implemented. In general,
functionality equivalent to this package is provided by the application developer when
building the board support package for the Ada runtime executive.

For details regarding 10 facilities of the native DOS compiler included in the system, refer to
the Alsys 286 DOS Ada Compiler Appendix F. 8.1 Accessing Devices

The application developermust provide a description of input-output devices and
provide drivers for them. These drivers permit the various devices to be accessed
directly through the Ada standard 10 packages TEXT_10, DIRECT_10 and
SEQUENTIAL_10.

All information necessary to describe devices and build drivers is provided in the Cross
Development Guide contained in this documentation set.

8.2 File Names and the FORM Parameter.

Only built-in files and devices are recognized as files by the 10 packages. All devices
and built-in files must be specified in the DEVICES.ASM file, as described in the
accompanying Cross Development Guide. Any number of files may be created. Several
logical files may be associated with a single device, provided that they are all defined in
DEVICES.ASM.

This implies that all CREATE procedures will raise USEERROR, and that all OPEN
procedures will also raise USEERROR if the NAME parameter does not designate a
built-in file or device.

The function FORM always returns a null string.

The FORM parameter of the OPEN procedures must be a null string.

30 Alsys i80x86 Ada Cross Compilation System. Appendix F. Version 4.2

8.3 Sequential Files

For sequential access the file is viewed as a sequence of values that are transferred in
the order of their appearance (as produced by the program or run-time environment).
This is sometimes called a stream file in certain operating systems. Each object in a se-
quential file has the same binary representation as the Ada object in the executable pro-
gram.

8.4 Direct Files

For direct access the file is viewed as a set of elements occupying consecutive positions
in a linear order. The position of an element in a direct file is specified by its index,
which is an integer of subtype POSITIVECOUNT.

DIRECT_10 only allows input-output for constrained types. If DIRECT _10 is in-
stantiated for an unconstrained type, all calls to CREATE or OPEN will raise
USE ERROR. Each object in a direct file will have the same binary representation as
the Ada object in the executable program. All elements within the file will have the
same length.

8.5 Text Files

Text files are used for the input and output of information in ASCII character form.
Each text file is a sequence of characters grouped into lines, and lines are grouped into
a sequence of pages.

All text file .i.Column numbers;column numbers, .i.Line numbers;line numbers, and
.i.Page numbers~page numbers are values of the subtype
.i.POSITIVECOUNT;POSITIVECOUNT.

Note that due to the definitions of line terminator, page terminator, and file terminator
in the RM, and the method used to mark the end of file under 286 DOS, some ASCII
files do not represent well-formed TEXT_10 files.

A text file is buffered by the .i.Runtime Executive;Runtime Executive unless

* it names a device, as indicated by the table ADA@DEV IOCTL. Refer to
the accompanying Cross Development Guide for details.

* it is STANDARD INPUT or STANDARDOUTPUT and is the console
input or output device, as designated in the table ADA@DEVIOCTL.

If the standard 10 files are mapped to the console, prompts written to
STANDARDOUTPUT with the procedure PUT will appear before (or when) a GET
(or GETLINE) occurs.

Appendix F, Implementation- Dependent Characteristics 31

The functions END OF PAGE and ENDOFFILE always return FALSE when the
file is a device, which includes the use of STANDARD INPUT when it corresponds to
the console input device. Programs which would like to check for end of file when the
file may be a device should handle the exception ENDERROR instead, as in the fol-
lowing example:

Example

begin
loop

-- Display the prompt:
TEXT IO.PUT ("--> ");
-- Read the next line:
TEXT IO.GETLINE (COMMAND, LAST);
-- Now do something with COMMAND (I .. LAST)

end loop;
exception

when TEXTIO.ENDERROR u>

null;
end;

END ERROR is raised for STANDARDINPUT when ^Z (ASCII.SUB) is entered
through the console input device.

8.6 The Need to Close a File Explicitly

The Runtime Executive will flush all buffers and close all open files when the program is
terminated, either normally or through some exception.

However, the RM does not define what happens when a program terminates without
closing all the opened files. Thus a program which depends on this feature of the
Runtime Executive might have problems when ported to another system.

8.7 Limitation on the procedure RESET

An internal file opened for input cannot be RESET for output. However, an internal
file opened for output can be RESET for input, and can subsequently be RESET back
to output.

-8.10 Sharing of External Files and Tasking Issues

Several internal files can be associated with the same external file only if all the internal
files are opened with node IN _MODE. However, if a file is opened with mode
OUTMODE and then changed to INMODE with the RESET procedure, it cannot be
shared.

32 Alsys i80x86 Ada Cross Compilation System. Appendix F, Version 4.2

Care should be taken when performing multiple input-output operations on an external
file during tasking because the order of calls to the 1/0 primitives is unpredictable. For
example, two strings output by TEXT IO.PUTLINE in two different tasks may ap-
pear in the output file with interleaved characters. Synchronization of I/O in cases such
as this is the user's responsibility.

The TEXT_10 files STANDARDINPUT and STANDARDOUTPUT are shared by
all tasks of an Ada program.

If TEXT _IO.STANDARDINPUT corresponds to the console input device, it will not
block a program on input. All tasks not waiting for input will continue running.

9 Characteristics of Numeric Types

9.1 Integer Types

The ranges of values for integer types declared in package STANDARD are as follows:

SHORT-INTEGER -128 .. 127 2"7 1

INTEGER -32768 .. 32767 2"15 - 1

LONG INTEGER -2147483648 .. 2147483647 -- 2*31 - 1

For the packages DIRECT 10 and TEXT_10, the range of values for types COUNT
and POSITIVECOUNT are as follows:

COUNT 0 .. 2147483647 2"*31 - 1

POSITIVECOUNT 1 .. 2147483647 2"31 - 1

For the package TEXT_10, the range of values for the type FIELD is as follows:

FIELD 0 .. 255 2**8 - 1

9.2 Floating Point Type Attributes

FLOAT LONG-FLOAT

DIGITS 6 * 1S

MANTISSA 21 51

EMAX 84 204

EPSILON 9.53674E-07 8.88178E-16

LARGE 1.93428E+25 2.57110E*61

Appendix F. Implementation-Dependent Characteristics 33

SAFE EMAX 125 1021

SAFESMALL 1.17549E-38 2.22507E-308

SAFE LARGE 4.25353E+37 2.24712E*307

FIRST -3.40282E 38 -1.79769E 308

LAST 3.40282E+38 1.79769E+308

MACHINE RADIX 2 2

MACHINEEMAX 128 10?4

MACHINE EMIN -125 -1r,21

MACHINEROUNDS true true

MACHINE-OVERFLOWS false fatse

SIZE 32 64

9.3 Attributes of Type DURATION

DURATION'DELTA 2.0 * (-14)

DURATIONISMALL 2.0 -- (-14)

DURATION FIRST -131072.0

DURATIOMLAST 131072.0

DURATION'LARGE same as DURATIONLAST

10 Other Implementation-Dependent Characteristics

10.1 Use of the Floating-Point Coprocessor (80287)

Floating point coprocessor (8087 or 80287 chip) instructions are used in programs that
perform arithmetic on floating point values in some fixed point operations and when the

"FLOAT_10 or FIXED_10 packages of TEXT_1O are used. The mantissa of a fixed
point value may be obtained through a conversion to an appropriate integer type. This
conversion does not use floating point operations. Programs using floating point
instructions require either an 8087 coprocessor or an 80287 coprocessor, alternatively, for
code running on an 80/86, 80286 or 80386 processor, the 8028' software emulation
library provided with the Compiler can be used. Note that object code running on an
8086 or 8088 does require an 8087 coprocessor, since 8087 software emulation is not
supported. See Appendix D of the Application Developer's Guide for more details.

34 Alsys i80x86 Ada Cross Compilation System. Appendix F. Version 4.2

The Runtime Executive will detect the absence of the floating point coprocessor if it is
required by a program and will raise CONSTRAINTERROR.

10.2 Characteristics of the Heap

All objects created by allocators go into the heap. Also, portions of the Runtime Execu-
tive representation of task objects, including the task stacks, are allo.,ated in the heap.

UNCHECKED_DEALLOCATION is implemented for all Ada access objects except
access objects to tasks. Use of UNCHECKEDDEALLOCATION on a task object will
lead to unpredictable results.

All objects whose visibility is linked to a subprogram, task body, or block have their
storage reclaimed at exit, whether the exit is normal or due to an exception. Effectively
pragma CONTROLLED is automatically applied to all access types. Moreover, all com-
piler temporaries on the heap (generated by such operations as function calls returning
unconstrained arrays, or many concatenations) allocated in a scope are deallocated upon
leaving the scope.

Note that the programmer may force heap reclamation of temporaries associated with
any statements by enclosing the statement in a begin .. end block. This is especially
useful when complex concatenations or other heap-intensive operations are performed in
loops, and can reduce or eliminate STORAGEERRORs that might otherwise occur.

The maximum size of the heap is limited only by available memory. This includes the
amount of physical memory (RAM) and the amount of virtual memory (hard disk swap
space).

10.3 Characteristics of Tasks

Normal priority rules are followed for preemption, where PRIORITY values are in the
range I .. 10. A task with undefined priority (no pragma PRIORITY) is considered to
be lower than priority 1.

The maximum number of active tasks is restricted only by memory usage.

The accepter of a rendezvous executes the accept body code in its own stack. Ren-
dezvous with an empty accept body (for synchronization) does not cause a context
switch.

'The main program waits for completion of all tasks dependent upon library packages
before terminating.

Abnormal completion of an aborted task takes place immediately, except when the ab-
normal task is the caller of an entry that is engaged in a rendezvous, or if it is in the
process of activating some tasks. Any such task becomes abnormally completed as soon
as the state in question is exited.

Appendix F. Implementation- Dependent Characteristics 35

The message

GLOBAL BLOCKING SITUATION DETECTED

is printed to STANDARD OUTPUT when theRuntime Executive detects that no
further progress is possible for any task in the program. The execution of the program
is then abandoned.

10.4 Definition of a Main Subprogram

A library unit can be used as a main subprogram if and only if it is a procedure that is
not generic and that has no formal parameters.

10.5 Ordering or Compilation Units

The Alsys i80x86 Ada Cross Compilation System imposes no additional ordering
constraints on compilations beyond those required by the language.

11 Limitations

11.1 Compiler Limitations

" The maximum identifier length is 255 characters.

" The maximum line length is 255 characters.

" The maximum number of unique identifiers per compilation unit is 2500.

" The maximum number of compilation units in a library is 1000.

" The maximum number of Ada libraries in a family is 15.

11.2 Hardware Related Limitations

" The maximum size of the generated code for a single compilation unit is
65535 bytes.

" The maximum size of a single array or record object is 65522 bytes. An
object bigger than 4096 bytes will be indirectly allocated. Refer to
ALLOCATION parameter in the COMPILE command. (Section 4.2 of the
User's Guide.)

* The maximum size of a single stack frame is 32766 bytes, including the data
for inner package subunits unnested to the parent frame.

36 Alsys i80x86 Ada Cross Compilation System, Appendix F, Version 4.2

" The maximum amount of data in the global data area is 65535 bytes, in-
cluding compiler generated data that goes into the GDA (about 8 bytes per
compilation unit plus 4 bytes per externally visible subprogram).

" The maximum amount of data in the heap is limited only by available mem-
ory, real and virtual.

" If an unconstrained record type can have objects exceeding 4096 bytes, the
type is not permitted (unless constrained) as the element type in the
definition of an array or record type.

Appendix F, Implementation- Dependent Characteristics 37

INDEX

80287 34 Direct files 31
8087 34 DIRECT 10 30, 31, 33

DURATION'DELTA 34
Abnormal completion 35 DURATION'FIRST 34
Aborted task 35 DURATION'LARGE 34
Access types 15 DURATION'LAST 34
Allocators 35 DURATION'SMALL 34
Application Developer's Guide 2
Array gaps 17 E'EXCEPTIONCODE 4
Array objects 28 EMAX 33
Array subtype 4 Empty accept body 35
Array subtype and object size 19 END ERROR 32
Array type 4 END _OF__FILE 32
ARRAY DESCRIPTOR 26 ENDOFPAGE 32

Attribute 4 Enumeration literal encoding 8
ASSEMBLER 2 Enumeration subtype size 9
ASSIGN TO ADDRESS 7 Enumeration types 8
Attributes of type DURATION 34 EPSILON 33

EXCEPTIONCODE
Basic record structure 20 Attribute 4
Binder 35
Buffered files 31 FETCHFROMADDRESS 7
Buffers FIELD 33

flushing 32 File closing
explicit 32

C 2 File terminator 31
Characteristics of tasks 35 FIRST 34
Collection size 15 Fixed point type representation 13
Collections 15 Fixed point.type size 14
Compiler limitations 36 Floating point coprocessor 34

maximum identifier length 36 Floating point type attributes 33
maximum line length 36 Floating point type representation 12
maximum number of Ada libraries Floating point type size 13

36
maximum number of compilation GET 31

units 36 GET LINE 31
maximum number of unique GLOBAL BLOCKING SITUATION

identifiers 36 DETECTED 36
Constrained types

1/0 on 31 Hardware limitations
CONSTRAINTERROR 35 maximum amount of data in the
Control Z 32 global data area 37
COUNT 33 maximum data in the heap 37
CREATE 31 maximum size of a single array or

record object 36
DIGITS 33

38 Alsys i80x86 Ada Cross Compilation System. Appendix F, Version 4.2

• e

maximum size of a single stack frame Maximum number of compilation units
36 36

maximum size of the generated code Maximum number of unique identifiers
36 36

Hardware related limitations 36 Maximum size of a single array or
Heap 35 record object 36

Maximum size of a single stack frame
I/O synchronization 33 36
Implementation generated names 28 Maximum size of the generated code 36
Implicit component 26, 27
Implicit components 24 Non-blocking I/O 33
IN MODE 32 Number of active tasks 35
INDENT 4
Indirect record components 21 OPEN 31
INTEGER 33 Ordering of compilation units 36
Integer type and object size I I OUTMODE 32
Integer type representation 10
Integer types 33 P'ARRAYDESCRIPTOR 4
Intel object module format 3 P'IS ARRAY 4
INTERFACE 2, 3 P'RECORDDESCRIPTOR 4
INTERFACE NAME 2, 3 PACK 4
Interleaved characters 33 Page terminator 31
10 EXCEPTIONS 30 Parameter passing I
ISARRAY POSITIVECOUNT 31, 33

Attribute 4 Pragma IMPROVE 4, 27
Pragma INDENT 4

•LARGE 33 Pragma INTERFACE 2, 3
LAST 34 Pragma INTERFACENAME 2, 3
Layout of a record 20 Pragma PACK 4, 17, 21
Library unit 36 Pragma PRIORITY 4, 35
Limitations 36 Pragma SUPPRESS 4
Line terminator 31 Predefined packages 28
LONG INTEGER 33 PRIORITY 4, 35
LOWLEVELIO 30 PUT 31

PUTLINE 33
MACHINEEMAX 34
MACHINE EMIN 34 Record objects 28
MACHINEMANTISSA 34 RECORDDESCRIPTOR
MACHINE OVERFLOWS 34 Attribute 4
MACHINERADIX 34 RECORDDESCRITPOR 27
MACHINEROUNDS 34 RECORDSIZE 25, 27
Main program 35 Rendezvous 35
Main subprogram 36 Representation clauses 8
MANTISSA 33 RESET 32
Maximum amount of data in the global Runtime Executive 1, 3, 32, 35, 36

data area 37
Maximum data in the heap 37 SAFE EMAX 34
Maximum identifier length 36 SAFE__LARGE 34
Maximum line length 36 SAFESMALL 34
Maximum number of Ada libraries' 36 Sequential files 31

SEQUENTIAL_10 30

Index 39

4Q

Sharing of external files 32
SHORT INTEGER 33
SIZE 34
Size of record types 28
SPACE 27
STANDARD INPUT 31, 32, 33
STANDARDOUTPUT 31, 33, 36
Storage reclamation at exit 35
STORAGESIZE 16
Stream file 31
SUPPRESS 4
Synchronization of 1/0 33
SYSTEM 4

Task activation 16
Task stack size 16, 35
Task stacks 35
Task types 16
Tasking issues 32
Tasks

characteristics of 35
Text file

buffered 31
Text files 31
TEXT 10 30, 33
TIME 27

Unchecked conversions 30
UNCHECKEDDEALLOCATION 35
USEERROR 31

Variant part 25
VARIANTINDEX 25, 26, 27

40 Alsys i80x86 Ada Cross Compilation System. Appendix F, Version 4.2

